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Abstract. We consider leptogenesis in a minimal S3 extension of the standard model with an additional
Z2 symmetry in the leptonic sector. It is found that the CP phase appearing in the mass matrix of the
left-handed neutrinos is the same as that for the CP asymmetries responsible for leptogenesis. Because
of the discrete S3 × Z2 flavor symmetries, the CP asymmetries are strongly suppressed. To obtain a
realistic size of the baryon number asymmetry in the universe, we therefore have to assume that resonant
enhancement of the CP asymmetries takes place, and that three degenerate right-handed neutrino masses
of O(10) TeV are present.
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1 Introduction

The baryon asymmetry in the universe brings cosmology
and particle physics together [1]. A theoretically attractive
idea [2] to produce baryon asymmetry is to apply a non-
perturbative conversion mechanism of lepton asymmetry
to baryon asymmetry, which exists as the sphaleron process
in the standard model (SM) [3, 4]. For this idea to work,
a sufficient amount of B − L has to be generated [5] at
temperatures T between 100 and 1012 GeV [6,7]. With the
experimental fact that the neutrinos are massive [8–11],
it is plausible to believe that they are Majorana particles
and hence the lepton number conservation is violated. This
situation is nicely realized in the see-saw mechanism [12],
which, after spontaneous symmetry breaking of SU(2)L ×
U(1)Y , generates the Majorana masses of the left-handed
neutrinos in the presence of heavy right-handed neutrinos.

With the see-saw mechanism at hand, it becomes indeed
possible to explain the observed ratio of baryons to photons
ηB = (6.2–6.9) × 10−10 [13] by leptogenesis [14–58]. How-
ever, the introduction of the right-handed neutrinos into
the SM introduces additional ambiguities in the Yukawa
sector. Because of these ambiguities, the theoretical value
of ηB depends on many independent parameters, so that
it would be very difficult to make quantitative tests of the
different mechanisms involved to produce baryon asymme-
try. The origin of these ambiguities in the Yukawa sector
in the SM is the missing of a more strict theoretical guide
to construct the Yukawa sector.

A natural guidance to constrain the Yukawa sector is a
flavor symmetry. Although there are attractive continuous
symmetries, we would like to consider discrete symmetries,
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especially non-abelian discrete symmetries1. However, ex-
perimental data require that within the framework of the
SM any non-abelian flavor symmetry has to be explicitly
broken at low energy by operators with canonical dimen-
sions equal to or greater than four. If the Higgs sector of
the SM is so extended that a certain set of Higgs fields be-
long to a non-trivial representation of a non-abelian flavor
group, phenomenologically viable possibilities may arise2.
The smallest non-abelian discrete group is S3. In this paper,
we would like to consider a minimal S3 invariant extension
of the SM [69, 70], in which S3 is only softly broken at
low energy, and consequently, the Yukawa sector is much
more constrained than in the SM. In Sect. 2 we define the
model, while investigating the independent phases in the
leptonic sector. We discuss neutrino mixing and CP phase
in Sect. 3, and express the average neutrino mass 〈mee〉
appearing in neutrinoless double β decay as a function of
the independent phase φν . Leptogenesis and baryon asym-
metry are considered in Sect. 4, while Sect. 5 is devoted to
summarizing our findings.

2 S3 invariant extension of the standard model

2.1 Leptonic sector

We assume that the three generations of quarks and leptons
belong to the reducible representation of S3 3 = 1+2. We

1 Earlier papers on permutation symmetries are [59–66] for
instance. See [67] for a review.

2 Recently, phenomenologically viable models based on non-
abelian discrete flavor symmetries S3 [68–73], D4 [74, 75],
A4 [76–79], Q4 [80] and Q6 [81], and also on a product of
abelian discrete symmetries [82–84], have been constructed.
See also [85–92].
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also introduce an S3 doublet Higgs fields, Hi(i = 1, 2), as
well as an S3 singlet Higgs, HS . The S3 invariant Yukawa
interactions in the leptonic sector is given by [69]3

LY = −y1LiHSEiR − y3LSHSESR − y2fijkLiHjEkR

−y4LSHiEiR − y5LiHiESR

−h1LIεH
∗
SνiR − h3LSεH∗

SνSR − h2fijkLiεH
∗
j νkR

−h4LSεH∗
i νiR − h5LiεH

∗
i νSR (1)

− 1
2

M1νiRνiR − 1
2

MSνSRνSR + h.c., i, j, k = 1, 2,

where

f121 = f211 = f112 = −f222 = 1,

f111 = f221 = f122 = f212 = 0. (2)

Here L, ER, νR and H stand for left-handed charged lep-
ton SU(2)L doublets, right-handed charged leptons, right-
handed neutrinos and Higgs SU(2)L doublets, respectively.
LY is the most general renormalizable form that is S3 in-
variant. In [69] an additional abelian discrete symmetry
Z2 has been introduced to achieve a further simplification
of the leptonic sector. The Z2 parity assignment is

+ for Hi, LS , Li, EiR, ESR, νiR

and
− for HS , νSR. (3)

This Z2 forces the following Yukawa couplings to vanish4:

y1, y3, h1 and h5. (4)

Let us next figure out the structure of the CP phases.
To this end, we introduce phases explicitly as follows:

ya → eipya ya (a = 2, 4, 5),

ha → eipha ha (a = 2, 4, 3) (5)

for the Yukawa couplings, where the y’s and h’s on the
right-hand side are assumed to be real and for the p’s
−π/2 ≤ p ≤ π/2, and similarly for the fields

Li → eipLLi, LS → eipLS LS ,

EiR → eipE EiR, ESR → eipES ESR,

νiR → eipν νiR, νSR → eipνS νSR. (6)

The phases of the right-handed neutrinos are used to absorb
the phase of their Majorana masses M1 and MS . The phases
of y2, y4 and y5 can be rotated away if

pL = py2 + pE , pLS
= py4 + pE ,

3 In [69] it is incorrectly stated that there is no CP phase in
the present model.

4 This symmetry is broken in the quark Yukawa sector. There-
fore, there will be radiative corrections coming from that sector.
However, they appear first at the two-loop level, and so one
may assume that they are small.

pES
= −py5 + py2 + pE (7)

are satisfied. So, only one free phase is left, which we assume
to be pL. Thenwe cancel the phase ofh2 by pL, which implies

pL = ph2 . (8)

No further phase rotation is possible, so that h3 and h4 can
be complex in general. (Since for the mass matrices one can
rotate the left-handed neutrinos and left-handed charged
leptons separately, one can eliminate one more phase so
that the neutrino mass matrix has only one independent
phase.) However, as we will see in the following discussions
that only the phase difference ph3 − ph4 enters into the
mass matrix of the left-handed neutrinos and into the CP
asymmetries responsible for leptogenesis.

2.2 Higgs sector

Before we come to discuss the double beta decay of the
present model, we would like to briefly summarize the
feature of the Higgs sector. The present model contains
five neutral physical Higgs fields; two scalars and three
pseudo scalars. Their couplings to the fermions are basi-
cally fixed [69], but the Yukawa sector does not satisfy the
general conditions [93,94] to suppress the tree level FCNCs.
The only way to suppress the tree level FCNCs in the model
is to make the Higgs particles sufficiently heavy � 10 TeV,
which mediate the tree level FCNCs. So, it is important to
study the Higgs potential. The S3 invariant Higgs potential
VH has been studied in [59,95]. It has turned out that all
the Higgs masses obtained from VH are proportional to
VEVs, so that unless one discards the triviality constraint,
they can be at most of the order of several hundreds GeV.
These values are too small to suppress FCNCs [59,65].

One of the ways out of the problem is to break the
S3 symmetry softly; as soft as possible to preserve the
prediction from S3 × Z2 in the Yukawa sector. It has been
observed that if the Higgs potential VH respects S3 as well
as Z2 invariance (Z2 is defined in (3)), it has an additional
abelian discrete symmetry S′

2,

H1 ↔ H2, (9)

which is not a subgroup of the original S3. Therefore, we
assume that the soft breaking mass term V̂SB also respects
this discrete symmetry S′

2, while breaking S3 × Z2 softly.
The most general form is

V̂SB = −µ2
SB1(H

†
1H2 + h.c.)

−[µ2
SB2 H†

S(H1 + H2) + h.c. ], (10)

where µSB1 is real, but µSB2 can be complex. It has been
shown in [95], under the assumption that µSB2 is real and
〈HS〉 �= 0, that for the S3×Z2×S′

2 invariant Higgs potential
with (10), only S′

2 invariant VEVs

〈HS〉 �= 0, 〈H1〉 = 〈H2〉 �= 0, (11)
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can satisfy the condition that all the physical Higgs bosons,
except one neutral physical Higgs boson, can become heavy
� 10 TeV without having a problem with triviality. We find
that even the reality assumption on µSB2 can be suppressed
to satisfy this condition. We would like to emphasize that
the S′

2 invariant VEVs (11) are the most economic VEVs
in the sense that the freedom of VEVs can be completely
absorbed into the Yukawa couplings so that we can derive
the most general form for the fermion mass matrices

M =


m1 + m2 m2 m5

m2 m1 − m2 m5

m4 m4 m3


 (12)

without referring to the details of the Higgs potential.
To diagonalize the Higgs fields, we redefine the Higgs

fields as

H± =
1√
2

(H1 ± H2), (13)

HL = cos γHS + sin γH+, HH = − sin γHS + cos γH+

and

H− =

(
h−

1√
2
(h0

− + iχ−)

)
,

HL =

(
hL

1√
2
(v + h0

L + iχL)

)
, (14)

HH =

(
hH

1√
2
(h0

H + iχH)

)
, (15)

where

v+ = 〈h0
+〉, vS = 〈h0

S〉,
v = (v2

+ + v2
S)1/2 = 246 GeV,

sin γ = v+/v, cos γ = vS/v. (16)

As we see from (14), only HL has VEV, and therefore,
one can identify HL as the SM Higgs doublet. In fact, hL
and χL are the would-be Goldstone bosons. However, the
neutral Higgs h0

L is not a mass eigenstate; it mixes with h0
H .

The mixing is of O(v2/µ2
SB) which is at most ∼ 10−3. It is

possible to kill this mixing by fine tuning of the couplings
in the Higgs potential. In the following we assume this.
Under this assumption, all the Higgs fields defined in (14)
and (15) are mass eigenstates. In Table 1, their masses are
given under the assumption that µ2

SB1, µ
2
SB2 	 v2.

3 Neutrino mixing
and neutrinoless double β decay

The fermion masses are generated from the S′
2 invariant

VEVs (16). Because of the Z2 symmetry (3), the mass
matrix for the charged leptons becomes

Me =


m2 m2 m5

m2 −m2 m5

m4 m4 0


 , (17)

Table 1. Mass of the Higgs particles. mh−,H should be larger
than ∼ 10 TeV to sufficiently suppress the tree level FCNCs

Higgs mass
h− m2

h− � 2µ2
SB1 +

√
2µ2

SB2 cot γ

h0
− m2

h0
−

� m2
h−

χ− m2
χ− � m2

h−
hL Would-be Goldstone
h0

L m2
hL

= O(v2)
χL Would-be Goldstone
hH m2

hH
� 2

√
2µ2

SB2/ sin 2γ

h0
H m2

h0
H

� m2
hH

χH m2
χH

� m2
hH

where

m2 = vy2 sin γ/
√

2, m4 = vy4 sin γ/
√

2,

m5 = vy5 sin γ/
√

2. (18)

As discussed previously, the phase of all the non-vanishing
Yukawa couplings y2, y4 and y5 can be rotated away. So,
all the mass parameters appearing in (17) are real. Diag-
onalization of the mass matrices is straightforward. The
mass eigen values are approximately given by

m2
e =

(m4m5)2

(m2)2 + (m5)2
+ O((m4)4), (19)

m2
µ = 2(m2)2 + (m4)2 + O((m4)4), (20)

m2
τ = 2[ (m2)2 + (m5)2 ] +

(m4m2)2

(m2)2 + (m5)2

+O((m4)4). (21)

Concrete values are given as m4/m5 
 0.00041 and
m2/m5 
 0.0596 and m5 
 1254 MeV to obtain me =
0.51 MeV, mµ = 105.7 MeV and mτ = 1777 MeV. The di-
agonalizing unitary matrices (i.e., UT

eLMeUeR) assume a
simple form in the me → 0 limit, which is equivalent to
the m4 → 0 limit. UeL in this limit is

U0
eL =


0 −1/

√
2 1/

√
2

0 1/
√

2 1/
√

2
1 0 0


 . (22)

We shall consider this limit later on.
Similarly, the Dirac neutrino mass matrix is given by

MD =


mD2 mD2 0

mD2 −mD2 0
mD4 mD4 mD3


 , (23)

where

mD2 = vh2 sin γ/
√

2, mD4 = vh4eiph4 sin γ/
√

2,

mD3 = v cos γh3eiph3 . (24)
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For the mass matrices one can rotate the left-handed
charged leptons and the left-handed neutrinos separately.
So, we rotate νSL to absorb the phase of mD4 , and we
rewrite MD as

MD =


mD2 mD2 0

mD2 −mD2 0
mD4 mD4 mD3 exp iϕ3


 , (25)

where

ϕ3 = ph4 − ph3 (−π/2 ≤ ϕ3 ≤ π/2), (26)

and the Dirac mass parameters mD in (25) are all real num-
bers.

The Majorana masses for νL can be obtained from
the see-saw mechanism, and the corresponding mass ma-
trix is given by Mν = MDM̃−1(MD)T, where M̃ =
diag(M1, M1, MS). We have assumed that the phases of
the right-handed neutrinos are used to rotate away the
phase of M1 and MS . So, we may assume that they are
real positive numbers. To express Mν in a simple form we
rescale the Dirac neutrino masses according to

mD2 → ρ2 = mD2/
√

M1, mD4 → ρ4 = mD4/
√

M1,

mD3 → ρ3 = mD3/
√

MS . (27)

Thanks to the Z2 symmetry (3), the mass matrix Mν takes
a simple form:

Mν = MDM̃−1(MD)T (28)

=


2(ρ2)2 0 2ρ2ρ4

0 2(ρ2)2 0
2ρ2ρ4 0 2(ρ4)2 + (ρ3)2 exp i2ϕ3


 .

The ρ’s in (28) are real numbers. One can convince oneself
that Mν can be diagonalized as [70]

UT
ν MνUν =


mν1e

iφ1−iφν 0 0
0 mν2e

iφ2+iφν 0
0 0 mν3


 , (29)

where

Uν =


 −s12 c12eiφν 0

0 0 1
c12e−iφν s12 0


 , (30)

mν3 sin φν = mν2 sin φ2 = mν1 sin φ1,

2ϕ3 = φ1 + φ2 (31)

mν3 = 2ρ2
2,

mν1mν2

mν3

= ρ2
3, (32)

tan φν =
ρ2
3 sin 2ϕ3

2(ρ2
2 + ρ2

4) + ρ2
3 cos 2ϕ3

, (33)

and c12 = cos θ12 and s12 = sin θ12. We also find that

tan2 θ12 =
(m2

ν2
− m2

ν3
sin2 φν)1/2 − mν3 | cos φν |

(m2
ν1

− m2
ν3

sin2 φν)1/2 + mν3 | cos φν | , (34)

from which we find

m2
ν2

∆m2
23

=
(1 + 2t212 + t412 − rt412)

2

4t212(1 + t212)(1 + t212 − rt212) cos2 φν

− tan2 φν (35)


 1
sin2 2θ12 cos2 φν

− tan2 φν for |r| � 1,

(36)

where t12 = tan θ12, r = ∆m2
21/∆m2

23. It can also be shown
that only an inverted mass spectrum

mν3 < mν1 , mν2 (37)

is consistent with the experimental constraint |∆m2
21| <

|∆m2
23| in the present model. Note that (32) is satisfied for

2ϕ3 = φ1 + φ2 ∼ ±π (38)

and not for φ1 ∼ φ2. That is, if 2ϕ3 ∼ +(−)π, then cos φ1 <

(>)0 and cos φ2 > (<)0. Now the product U†
eLPUν defines

a neutrino mixing matrix VMNS, where

P =


1 0 0

0 1 0
0 0 eip′

h4


 , p′

h4
= ph4 − ph2 + py2 − py4 .

For our purpose it is sufficient to use the approximate
unitary matrix U0

eL given in (22) which is obtained in the
limit that the electron mass is zero. We denote the ap-
proximate neutrino mixing matrix by V 0

MNS obtained from
U0

eL and Uν . The product U0†
eLPUν can be brought by an

appropriate phase transformation to a popular form:

VMNS 
 V 0
MNS =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13




×

1 0 0

0 eiα 0
0 0 ei β


 . (39)

with

s13 = 0, t23 =
s23

c23
= 1, (40)

sin 2α = sin(φ1 − φ2)

= ± mν3 sin φν

mν1mν2

(41)

×
(√

m2
ν2

− m2
ν3

sin2 φν +
√

m2
ν1

− m2
ν3

sin2 φν

)


 ±2 sin φν(mν3/mν2)
√

1 − (mν3/mν2)2 sin2 φν ,
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Fig. 1. The effective Majorana mass 〈mee〉 as
a function of sin φν with sin2 θ12 = 0.3 and
∆m2

21 = 6.9 × 10−5 eV2. The dashed, solid and
dot-dashed lines stand for ∆m2

23 = 1.4, 2.3 and
3.0 × 10−3 eV2, respectively. The ∆m2

21 depen-
dence is very small

sin 2β = sin(φ1 − φν)

= ± sin φν

mν1

(42)

×
(

mν3

√
1 − sin2 φν +

√
m2

ν1
− m2

ν3
sin2 φν

)

for 2ϕ2 ∼ ±π, where φ1, φ2 and φν are defined in (32)5.
The effective Majorana mass 〈mee〉 in neutrinoless dou-

ble β decay is given by

〈mee〉 =

∣∣∣∣∣
3∑

i=1

mνi
V 2

ei

∣∣∣∣∣ 
 |mν1c
2
12 + mν2s

2
12 exp i2α|, (43)

where φν and α are given in (32) and (41), respectively. In
Fig. 1 we plot 〈mee〉 as a function of sinφν for sin2 θ12 =
0.3, ∆m2

21 = 6.9×10−5 eV2 and∆m2
23 = 1.4, 2.3, 3.0×10−3

eV2 [97]. As we can see from Fig. 1, the effective Majorana
mass stays at about its minimal value 〈mee〉min for a wide
range of sinφν . Since 〈mee〉min is approximately equal to√

∆m2
23/ sin 2θ12 = (0.034–0.069) eV, it is consistent with

recent experiments [13,98] and is within an accessible range
of future experiments [99].

Noticing that (32), (38) and (41), one obtains6 (for
2ϕ3 ∼ −π)

sin 2ϕ3 = − mν3

mν1

sin φν

[
1 −

(
mν3

mν2

sin φν

)2
]1/2

+
mν3

mν2

sin φν

[
1 −

(
mν3

mν1

sin φν

)2
]1/2

5 For a non-vanishing electron mass, we have s13 �
me/

√
2mµ � 0.0034 and δ = ph4 − φν . Unfortunately, this

value of s13 is too small to be measured [96].
6 As we will see in the next section, the ratio of baryons to

photons ηB is proportional to − sin 2ϕ3.


 − mν3

2m3
ν2

∆m2
21 sin φν

(1 − (mν3/mν2)2 sin2 φν)1/2
, (44)

where ∆m2
21/m2

ν2
� 1 is assumed. As one sees from (35),

(37), (38), (41) and (42), once θ12, ∆m2
21 and ∆m2

23 are
given, the only free parameter is φν . Numerically one finds

sin 2ϕ3 
 −(0.0034–0.013) sin φν , (45)

where we have used sin2 θ12 = 0.3, 1.4 eV2 � ∆m2
21 ×

105 � 3.0 eV2 and 6.1 eV2 � ∆m2
23 × 103 � 8.4 eV2 [97].

Therefore, CP asymmetry, being proportional to sin 2ϕ3,
is very small in the present model, even if the CP phase
appearing in neutrinoless double β decays is large7.

4 Leptogenesis

4.1 CP phase

Before we start to compute CP asymmetries, we first would
like to consider the mixing of the charged leptons in the
limit that the mass of the electron vanishes. That is, we
approximate the unitary matrix which defines the mass
eigenstates of the charged leptons by U0

eL; see (22). We
next rewrite the Yukawa interactions (1) in terms of the
mass eigenstates for the Higgses, (14) and (15), and the
charged leptons. The relevant part for leptogenesis becomes

Lh = −h−
IJ L̂IεH

∗
−νJR − hH

IJ L̂IεH
∗
HνJR

−hL
IJ L̂IεH

∗
LνJR (46)

with

L̂ = U0
eLL =

((
νeL

eL

)
,

(
νµL

µL

)
,

(
ντL

τL

))
, (47)

7 Models in which the CP phases in the neutrino mixing
matrix are closely related to those for leptogenesis have been
considered, for instance, in [42–46].
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Fig. 2. sin 2ϕ3 versus sin φν with sin2 θ12 = 0.3
in the case of 2ϕ3 ∼ +π. The case of 2ϕ3 ∼
−π is the same except for the sign of sin 2ϕ3.
The dot-dashed, solid and dashed lines stand for
(∆m2

23 × 103, ∆m2
21 × 105) = (3.0, 6.1), (2.3, 6.9)

and (1.4, 8.4) eV2, respectively

where

hH
IJ =


cos γh4eiph4 /

√
2 cos γh4eiph4 /

√
2 − sin γh3eiph3

0 − cos γh2 0
cos γh2 0 0


 ,

(48)

hL
IJ =


sin γh4eiph4 /

√
2 sin γh4eiph4 /

√
2 cos γh3eiph3

0 − sin γh2 0
sin γh2 0 0


 ,

(49)

h−
IJ =


h4eiph4 /

√
2 −h4eiph4 /

√
2 0

h2 0 0
0 h2 0


 , (50)

where γ is defined in (16).
There are two types of diagrams that contribute to CP

asymmetries, vertex diagrams [2, 14] and self-energy dia-
grams [17,18]. Non-vanishing CP asymmetries are propor-
tional to the imaginary part of (hKIh

∗
KJ)2. In the present

case, there are three Higgs fields, and one finds that if one
neglects the mass difference of the Higgs bosons, the vertex
correction is proportional to the imaginary part of∑

J,K,M

∑
A,B=H,L,−

(hA
JIh

B∗
JK)(hB

MIh
A∗
MK), (51)

while the self-energy correction is proportional to the imag-
inary part of∑

J,K,M

∑
A,B=H,L,−

(hA
JIh

A∗
JK)(hB

MIh
B∗
MK). (52)

Since hI1 and hI2 have the same phase, only the case
I = 1, 2, K = 3 or I = 3, K = 1, 2 yields non-vanishing CP
asymmetries. Therefore, the matrix h−

IJ cannot contribute
to CP asymmetries. Moreover, since hH,L

i3 = 0 (i = 2, 3),

both the vertex and self-energy contributions become pro-
portional to the imaginary part of∑

A,B=H,L

(hA
1ih

A∗
13 )(hB

1ih
B∗
13 ), i = 1, 2. (53)

However, from (48) and (49) we obtain

hH
1ih

H∗
13 + hL

iIh
L∗
13 = 0, (54)

implying that CP asymmetries vanish, if the mass dif-
ferences of the Higgs bosons are neglected. That is, CP
asymmetries, generated in one-loop with HL and HH ex-
changes, cancel with each other. In the presence of the soft
S3 × Z2 breaking mass terms (10), the mass of HH can
be considerably different from that of HL, as we can see
from Table 1. Consequently, there will be non-vanishing
CP asymmetries in a realistic case, in which H− and HH

are made heavy by the soft S3 × Z2 breaking terms to
suppress the tree level FCNCs.

After so many discussions about the S3 limit, we
find that

Im [hH,L
1I hH,L∗

1J ]2 ∼ (h3h4)2 sin 2(ph3 − ph4)

= −(h3h4)2 sin 2ϕ3, (55)

with I = 1, 2, J = 3 or I = 3, J = 1, 2, where ϕ3 is given
in (26), which is the only phase left over in the neutrino
mass matrix. Therefore, the CP phase appearing in the
neutrino mixing is the same as that for CP asymmetries.

4.2 CP asymmetries and baryon number asymmetry

We first calculate the total decay width of the right-handed
neutrinos. The relevant parts of the Yukawa interactions
for this purpose are given in (46)–(50). For the S3 singlet
right-handed neutrino νSR one finds
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ΓST

= ΓS [l + HL] + ΓS [l + HH ] + ΓS [lc + Hc
L]

+ΓS [lc + Hc
H ]

=
1
8π

h2
3MS (56)

×

cos2 γ + sin2 γ


 (1 − m2

hH

M2
S

)2

θ(MS − mhH
)






→ 1
8π

h2
3MS as mhH

/MS → 0,

→ 1
8π

h2
3MS cos2 γ =

1
8π

(
mν1mν2

mν3

)(
MS

v2

)2

as mhH
/MS → 1,

where the first term results from the decay into the SM
Higgs HL, and the second term comes from the decay into
HH with mass mhH

. The last equality follows from (24),
(25), (27) and (32). Similarly, one finds the total decay
width of ν1R and ν2R

Γ1T = Γ2T

=
1
8π

(
1
2

h2
4 + h2

2

)
M1

×

sin2 γ + cos2 γ


 (1 − m2

hH

M2
1

)2

θ(M1 − mhH
)




+


(1 − m2

h−

M2
1

)2

θ(M1 − mh−)




 (57)

→ 1
4π

(
1
2

h2
4 + h2

2

)
M1 as mhH

/M1, mh−/M1 → 0,

→ 1
8π

(
1
2

h2
4 + h2

2

)
M1 sin2 γ

=
1
8π

(mν3 + ρ2
4)
(

M1

v

)2

as mhH
/M1, mh−/M1 → 1,

where M1 = M2 is assumed.
Because of (45), i.e. | sin ϕ3| � 0.013, one needs an

enhancement to obtain a realistic value of baryon asym-
metry. A nice way is the resonant enhancement [17,18,22],
which we consider below8. Since in this case the self-energy
contributions to CP asymmetries dominate, we consider
only them and neglect the contributions coming from the
vertex diagrams. In the S3 symmetric limit, M1 is equal
to M2. This relation is modified to M1 = M2 +O(mν) be-
cause of spontaneous symmetry breaking of S3. So, there
is a natural degeneracy of ν1R and ν2R. However, there is

8 See, for instance, [47–56] for recent models with resonant
enhancement of leptogenesis. See also [58].

no resonant enhancement between ν1R and ν2R, because
ImhH,L

i1 (hH,L
i2 )∗ = 0aswe can see from (48) and (49).There-

fore, we may neglect this small correction, and we have to
assume that M1 = M2 
 MS . Introducing the notation

∆M2/M2
S = 1 − M2

1

M2
S

= 1 − x ∼ 0, (58)

we find that

∆ΓS = ΓS [l + HL] + ΓS [l + HH ] − ΓS [lc + Hc
L]

−ΓS [lc + Hc
H ]

=
1

64π2 (h4h3)2(sin2 γ cos2 γ) sin 2ϕ3

×[1 − (1 − yH)2θ(1 − yH)]2
M1

1 − x
, (59)

and ∆Γ1 
 ∆ΓS/2 for MS 
 M1. We have assumed that

ΓST,1T /MS � |∆M2/M2
S | (60)

to use the approximate formula (59). From these calcula-
tions we obtain the CP asymmetries

εS =
∆ΓS

ΓST

=
1
8π

h2
4 sin 2ϕ3 (61)

× [1 − (1 − yH)2θ(1 − yH)]2

[1/ sin2 γ + (1 − yH)2θ(1 − yH)/ cos2 γ]

√
x

1 − x
,

ε1 = ε2 
 1
2

ΓST

Γ1T
εS , (62)

where

yH =
m2

hH

M2
S

. (63)

From (61) various limits may be obtained:

εS → 0 as yH → 0 (64)

→ 1
8π

h2
4 sin 2ϕ3 sin2 γ

√
x

1 − x

=
1
4π

(
ρ2
4MS

v2

)
sin 2ϕ3

√
x

1 − x
as yH → 1, (65)

where we have used (24), (25) and (27).
To be definite we assume yH , y− = m2

h−/M2
S ∼ 1 in

the following discussions. Then only the SM Higgs HL
contributes to CP asymmetries, and the phase φν (or ϕ3),
sin2 γ (defined in (16) ) and the effective mass

Meff =
M1

1 − x
=

M2
SM1

M2
S − M2

1

 M3

S

M2
S − M2

1
(66)

are the only independent parameters. The lepton and
baryon asymmetries YL = nL/s and YB = nB/s (nL, nB
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Fig. 3. ηB versus sin φν . The dot-dashed, solid
and dotted lines correspond to Meff = M1/(1 −
x) = 4.0, 1.0, 0.7 × 1013 GeV. We have assumed
that mhH , mh− � MS and used sin2 θ12 =
0.3, ∆m2

23 = 2.3 × 10−3 eV2, ∆m2
21 = 6.9 ×

10−5 eV2. The experimental value of ηB × 1010

is about 6.5 [13]

are the lepton and baryon number density, and s is the
entropy density) are given by [5]

YL 
 κSεS/g∗ + 2κ1ε1/g∗ with g∗ 
 120, (67)

YB =
ω

ω − 1
YL, (68)

ω =
8NF + 4NH

22NF + 13NH

 0.34 for NF = 3, NH = 3,

(69)

where kS(1) is the dilution factor for the CP asymmetry
εS(1), and g∗ is the effective number of degrees of freedom
at the temperature T = MS 
 M1 = M2. We have taken
into account all the degrees of freedom in g∗ including
three right-handed neutrinos and three Higgs doublets. The
dilution factors can be approximately written as [1,22,23]

κS 
 0.3
KS [lnKS ]3/5 , κ1 
 0.3

K1[lnK1]3/5 , (70)

where

KS = ΓST /HST

=
h2

3

16π
MPL

1.66
√

g∗MS
=

ρ2
3

8πv2

MPL

1.66
√

g∗ (71)


 4.4 × 102 (mν1/1 eV)(mν2/1 eV)
(mν3/1 eV)

, (72)

K1 =
ρ2
4 + mν3

8πv2

MPL

1.66
√

g∗


 4.4 × 102(ρ2
4 + mν3)/1 eV, (73)

where the ρ’s are given in (27), and (32) is used. [The
approximate formula (70) is applicable for 10 � KS,1 �
106.] Note that using (32) and (33), we can express ρ2

4 in
terms of the neutrino masses, φν and ϕ3, and we find that
the sin γ dependence in κS and κ1 cancels so that the lepton

asymmetry and hence the baryon asymmetry YB does not
depend on sin γ. Finally, the ratio of the baryon number
density to the photon density ηB is given by

ηB 
 7.04YB 
 −3.0 × 10−2(κSεS + 2κ1ε1). (74)

In Fig. 3 ηB as a function of sinφν is plotted for three
different values of Meff = M1/(1 − x) = 4.0, 1.0, 0.7 ×
1013 GeV. As we see from Fig. 3, ηB becomes maximal
around sinφν 
 0.75. To obtain a realistic value of nB(

6.5×10−10), the effective mass |Meff | = M1/|1−x| should
be of O(1013) GeV, which means that |1−x| has to be very
small if M1 is much smaller than 1013 GeV. We have to
fine tune MS so that |1 − x| = |1 − M2

1 /M2
S | 
 10−9 for

MS = 10 TeV, for instance.
Let us at last discuss how fine this fine tuning is. A

fine tuning is unnatural if radiative corrections are larger
than the fine tuning. The one-loop radiative correction to
the right-handed neutrino masses may be estimated to be
δM ∼ Mh2/16π2, where h stands for the generic Yukawa
couplings in (1), and M for M1 and MS . So, the fine tuning
of (1 − x) will be natural if

|1 − x| = |1 − M2
1 /M2

S | > δM/M ∼ h2/16π2. (75)

This condition, however, is weaker than the condition
|M2

S − M2
1 | 	 MSΓST and M1Γ1T , for the approximate

formula (61) for the one-loop self-energy diagram to be
applicable [22]. The latter condition is equivalent to

|1 − x| 	 1
8π

(h2
2 sin2 γ, h2

2 sin2 γ, h2
3 cos2 γ), (76)

as we can see from (56) and (57). Therefore, if this condi-
tion is satisfied, the naturalness condition is automatically
satisfied. The value of h can be estimated from (24), (25),
(27) and (32):

1
8π

h2
2 sin2 γ =

1
8π

(mν3

v

)(M1

v

)
� 10−13 M1

v
, (77)
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1
8π

h2
4 sin2 γ

=
1

16π

(
mν1mν2

mν3v

sin 2ϕ3

tan φν
+

mν1mν2

mν3v
cos 2ϕ3 − mν3

v

)

×
(

M1

v

)

� 10−13 M1

v
, (78)

1
8π

h2
3 cos2 γ

=
1
8π

(
mν1mν2/mν3

v

)(
MS

v

)
� 10−13 MS

v
. (79)

The last inequality is obtained as follows. First we use
the fact that in the present model an inverted hierarchy
is predicted, and the experimental bound [13] mν � 0.2
eV. The ratio | sin 2ϕ3/ tan φν | is less than 0.013 because
of (45). Further from (36) we find

m2
ν2

� ∆m2
23

sin2 2θ12
, (80)

which gives

m2
ν2

m2
ν3

=
(

1 − ∆m2
23

m2
ν2

)−1

�
(
1 − sin2 2θ12

)−1
= cos−2 2θ12 � (4.6)2. (81)

Therefore, the condition (76) becomes

|1 − x| 	 10−13 M1

v
. (82)

In terms of the effective mass Meff one finally finds

|Meff | =
M1

|1 − x| � 1013v 
 1015 GeV. (83)

Therefore, the criterion on the validity of the approximate
formula (61) does not depend on the mass of the right-
handed neutrinos. We recall that if (83) is satisfied, the
naturalness condition (75) is automatically satisfied. For
MS = 10 TeV, for instance, we obtain |1 − x| 	 4 × 10−13

which implies that the fine tuning of |1 − x| 
 10−9 to
obtain Meff 
 1013 GeV is not unnatural, and the use of
the approximate formula (61) is justified. The main reason
of the independence of the right-handed neutrinos masses,
M1 and MS , is the see-saw mechanism; the smaller M1 and
MS are, the finer fine tuning of (1 − x) is allowed because
of (76).

As we can see from (64), the CP asymmetries in the
present model vanish if the Higgs masses are much smaller
than the right-handed neutrinos masses. On one hand,
the heavier the Higgs masses are, the finer fine tuning is
needed in the Higgs sector. The constraints coming from
FCNCs, on the other hand, require them to be larger than
O(10) TeV [59, 65]. Therefore, if we would like to explain
the observed baryon asymmetry from leptogenesis within
the framework of the present model, it is theoretically de-
sirable to have right-handed neutrinos masses less than,
say, O(100) TeV.

5 Conclusion

In this paper we considered a minimal S3 extension of the
SM and investigated the possibility to explain the observed
baryon asymmetry in the universe through leptogenesis [2].
Below we would like to summarize our findings.
(1) As in [69,70], we assumed an additional discrete sym-
metry (3) to increase the predictive power in the leptonic
sector. The leptonic sector of the Yukawa interactions con-
tains two independent phases ph4 and ph3 . We found that
in the limit that the electron mass vanishes, only the com-
bination 2ϕ3 = 2(ph3 −ph4) enters into the neutrino mixing
matrix VMNS as well as into the CP asymmetries ε’s respon-
sible for leptogenesis. (In this limit, Ve3 vanishes.) However,
because of (45), we obtained δCP = | sin 2ϕ3| � 0.013.
(2) It turned out that in the S3 symmetric limit, the CP
asymmetries vanish. Therefore, within the framework of
the minimal extension, one has to break S3 explicitly. To
keep the predictivity in the Yukawa sector, we broke it
softly. We note that the same soft masses were introduced
in [95] to make the heavy Higgses heavy � O(10) TeV in
order to suppress sufficiently the tree level FCNCs.
(3)Because of | sin 2ϕ3| � 0.013, an enhancement is needed.
A nice way is the resonant enhancement [17,18,22], which
requires all the right-handed neutrino masses to be degen-
erate. [M1 = M2, up to very small corrections, is ensured
by S3 symmetry even if it is softly broken.]
(4) We also found that the CP asymmetries vanish if
the right-handed neutrino masses are much larger than
the heavy Higgs masses. Therefore, to obtain a realistic
size for baryon asymmetry, we have to assume that the
right-handed neutrino masses are bounded from above.
The heavy Higgs masses dictate the upper bound.
(5) At last, we investigated the question of how fine the fine
tuning needed for the degeneracy of the neutrino masses
is. We found that if the criterion (83) on the validity of the
approximate formula (61) is satisfied, and the naturalness
condition (75) is automatically satisfied. It turned out that
the criterion (83) does not depend on the mass of the right-
handed neutrinos.

As Fig. 3 presents, it is possible in the present model to
explain the observed baryon asymmetry in the universe by
leptogenesis. The basic parameters are the right-handed
neutrino masses, the heavy Higgs masses and the CP
phase. Since the resonant enhancement of CP asymme-
tries is assumed, and consequently, the degeneracy among
the right-handed neutrino masses has to be very precise,
it will be very difficult to experimentally determine the
right-handed neutrino masses from a precise measurement
of baryon asymmetry alone, even if the CP phase is pre-
cisely known. Experimentally, this is not a nice feature,
but the model predicts (if the observed baryon asymme-
try should be explained by leptogenesis) that there will be
three extremely degenerate right-handed neutrinos whose
masses are comparable with or less than the heavy Higgs
masses. On one hand, the smaller the heavy Higgs masses
are, the more natural is the fine tuning in the Higgs sector.
The masses of the heavy Higgses, on the other hand, are
� O(10) TeV to sufficiently suppress the tree level FCNCs.
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J. Phys. 6, 122 (2004)

98. H.V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12,
147 (2001); C.E. Aalseth et al., Phys. Atm. Nucl. 63, 1268
(2000); H.V. Klapdor-Kleingrothaus, A. Dietz, H.L. Har-
ney, I.V. Krivosheina, Mod. Phys. Lett. A 16, 2409 (2001)

99. H.V. Klapdor-Kleingrothaus, hep-ph/0307330


